Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells-an approach in experiment and simulation

Identifieur interne : 000A46 ( Main/Repository ); précédent : 000A45; suivant : 000A47

Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells-an approach in experiment and simulation

Auteurs : RBID : Pascal:14-0017678

Descripteurs français

English descriptors

Abstract

We present a thorough study on the various impacts of polymer:nanoparticle ratios on morphology, charge generation and device performance in hybrid solar cells, comprising active layers consisting of a conjugated polymer and in situ prepared copper indium sulfide (CIS) nanoparticles. We conducted morphological studies through transmission electron microscopy and transient absorption measurements to study charge generation in absorber layers with polymer:nanoparticle weight ratios ranging from 1:3 to 1:15. These data are correlated to the characteristic parameters of the prepared solar cells. To gain a deeper understanding of our experimental findings, three-dimensional drift-diffusion-based simulations were performed. Based on elaborate descriptions of the contributions of polymer and nanoparticle phase to device performances, our results suggest that a polymer:CIS volume ratio of 1:2 (weight ratio 1:9) is necessary to obtain a balanced hole and electron percolation. Also at higher CIS loadings the photocurrent remains surprisingly high due to the contribution of the CIS phase to the charge carrier generation.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0017678

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells-an approach in experiment and simulation</title>
<author>
<name sortKey="Arar, Mario" uniqKey="Arar M">Mario Arar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gruber, Manfred" uniqKey="Gruber M">Manfred Gruber</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Theoretical and Computational Physics, Graz University of Technology, Petersgasse 16</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Edler, Michael" uniqKey="Edler M">Michael Edler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haas, Wernfried" uniqKey="Haas W">Wernfried Haas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, and Graz Centre for Electron Microscopy, Steyrergasse 17</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hofer, Ferdinand" uniqKey="Hofer F">Ferdinand Hofer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, and Graz Centre for Electron Microscopy, Steyrergasse 17</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Neha" uniqKey="Bansal N">Neha Bansal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road</s1>
<s2>SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reynolds, Luke X" uniqKey="Reynolds L">Luke X. Reynolds</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road</s1>
<s2>SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haque, Saif A" uniqKey="Haque S">Saif A. Haque</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road</s1>
<s2>SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zojer, Karin" uniqKey="Zojer K">Karin Zojer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Theoretical and Computational Physics, Graz University of Technology, Petersgasse 16</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trimmel, Gregor" uniqKey="Trimmel G">Gregor Trimmel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rath, Thomas" uniqKey="Rath T">Thomas Rath</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0017678</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0017678 INIST</idno>
<idno type="RBID">Pascal:14-0017678</idno>
<idno type="wicri:Area/Main/Corpus">000330</idno>
<idno type="wicri:Area/Main/Repository">000A46</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Charge carrier generation</term>
<term>Conjugated polymer</term>
<term>Copper sulfide</term>
<term>Diffusion</term>
<term>Digital simulation</term>
<term>Indium sulfide</term>
<term>Morphology</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Percolation</term>
<term>Photoconductivity</term>
<term>Photocurrents</term>
<term>Solar cells</term>
<term>Transients</term>
<term>Transmission electron microscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Morphologie</term>
<term>Polymère conjugué</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Cellule solaire</term>
<term>Simulation numérique</term>
<term>Couche active</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Microscopie électronique transmission</term>
<term>Phénomène transitoire</term>
<term>Diffusion(transport)</term>
<term>Percolation</term>
<term>Courant photoélectrique</term>
<term>Photoconductivité</term>
<term>Génération porteur charge</term>
<term>6865</term>
<term>8107B</term>
<term>8460J</term>
<term>6630P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present a thorough study on the various impacts of polymer:nanoparticle ratios on morphology, charge generation and device performance in hybrid solar cells, comprising active layers consisting of a conjugated polymer and in situ prepared copper indium sulfide (CIS) nanoparticles. We conducted morphological studies through transmission electron microscopy and transient absorption measurements to study charge generation in absorber layers with polymer:nanoparticle weight ratios ranging from 1:3 to 1:15. These data are correlated to the characteristic parameters of the prepared solar cells. To gain a deeper understanding of our experimental findings, three-dimensional drift-diffusion-based simulations were performed. Based on elaborate descriptions of the contributions of polymer and nanoparticle phase to device performances, our results suggest that a polymer:CIS volume ratio of 1:2 (weight ratio 1:9) is necessary to obtain a balanced hole and electron percolation. Also at higher CIS loadings the photocurrent remains surprisingly high due to the contribution of the CIS phase to the charge carrier generation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>48</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells-an approach in experiment and simulation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Organic photovoltaics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ARAR (Mario)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRUBER (Manfred)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EDLER (Michael)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HAAS (Wernfried)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HOFER (Ferdinand)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BANSAL (Neha)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>REYNOLDS (Luke X.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HAQUE (Saif A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ZOJER (Karin)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TRIMMEL (Gregor)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>RATH (Thomas)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KREBS (Frederik C.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CHEN (Hongzheng)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Theoretical and Computational Physics, Graz University of Technology, Petersgasse 16</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, and Graz Centre for Electron Microscopy, Steyrergasse 17</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road</s1>
<s2>SW7 2AZ</s2>
<s3>GBR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Energy Conversion and Storage, Denmark Technical University</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Polymer Science and Engineering, Zhejiang University</s1>
<s2>Hongzhou 310027</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s2>484005.1-484005.10</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000504299280050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0017678</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present a thorough study on the various impacts of polymer:nanoparticle ratios on morphology, charge generation and device performance in hybrid solar cells, comprising active layers consisting of a conjugated polymer and in situ prepared copper indium sulfide (CIS) nanoparticles. We conducted morphological studies through transmission electron microscopy and transient absorption measurements to study charge generation in absorber layers with polymer:nanoparticle weight ratios ranging from 1:3 to 1:15. These data are correlated to the characteristic parameters of the prepared solar cells. To gain a deeper understanding of our experimental findings, three-dimensional drift-diffusion-based simulations were performed. Based on elaborate descriptions of the contributions of polymer and nanoparticle phase to device performances, our results suggest that a polymer:CIS volume ratio of 1:2 (weight ratio 1:9) is necessary to obtain a balanced hole and electron percolation. Also at higher CIS loadings the photocurrent remains surprisingly high due to the contribution of the CIS phase to the charge carrier generation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60F30P</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polymère conjugué</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Conjugated polymer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polímero conjugado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Transients</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Percolation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Percolation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Photocurrents</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Génération porteur charge</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Charge carrier generation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Generación portador carga</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6630P</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000A46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0017678
   |texte=   Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells-an approach in experiment and simulation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024